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Abstract

The Jahob program verification system leverages state of
the art automated theorem provers, shape analysis, and de-
cision procedures to check that programs conform to their
specifications. By combining a rich specification language
with a diverse collection of verification technologies, Jahob
makes it possible to verify complex properties of programs
that manipulate linked data structures. We present our re-
sults using Jahob to achieve full functional verification of a
collection of linked data structures.

1 Introduction

Linked data structures such as lists, trees, graphs, and
hash tables are pervasive in modern software systems. But
because of phenomena such as aliasing and indirection, it
has been a challenge to develop automated reasoning sys-
tems that are capable of proving important correctness prop-
erties of such data structures.

Jahob is a program verification system that leverages a
rich specification language and a diversity of automated the-
orem provers and decision procedures to verify complex
properties of programs that manipulate linked data struc-
tures. Our specifications use abstract sets and relations to
characterize the abstract state of the data structure. A ver-
ified abstraction function defines abstract sets and relations
in terms of concrete objects and references that the imple-
mentation manipulates at run time. Specifications use ab-
stract sets and relations to state externally visible properties
of the data structure state and to specify method precondi-
tions and postconditions. These specifications capture all of
the semantic information that the developer needs to use the
data structure.

Jahob establishes desired program properties using a
number of external decision procedures, Nelson-Oppen
provers, and first-order provers. It automatically generates
verification condition formulas from the program and its
specification, then splits each verification condition into an

equivalent conjunction of properties. By processing each
conjunct separately, Jahob can use different provers to es-
tablish different parts of the proof obligations. This is
possible thanks to formula approximation techniques[10]
that create equivalent or semantically stronger formulas ac-
cepted by the specialized decision procedures.

This paper presents our experience using the Jahob sys-
tem to obtain full correctness proofs for a collection of
linked data structure implementations. Unlike systems that
are designed to verify partial correctness properties, Jahob
verifies the full functional correctness of the data structure
implementation. Not only do our results show that such full
functional verification is feasible, the verified data struc-
tures and algorithms provide concrete examples that can
help developers better understand how to achieve similar
results in future efforts.

2 Example

In this section we use a verified association list to demon-
strate how developers specify data structure implementa-
tions in Jahob. Figure 1 presents selected portions of the
AssocList class. This class maintains a list of key, value
pairs. Our system works with Java programs augmented
with specifications. The specifications appear as special
comments of the form /*: ... */ or //:, enabling the use of stan-
dard Java compilers and virtual machines. The first com-
ment in Figure 1 identifies the abstract state content of the
association list as a relation in the form of a set of pairs of
objects (we present the abstraction function that defines this
abstract state below).1

The put(k0,v0) method inserts the pair (k0,v0) into the
association list, returning the previous association for k0 (if
such an association exists). The requires clause indicates

1Our examples use mathematical notation for concepts such as set
union and universal quantification. While our source code files encode
this notation in text, Isabelle’s version of the ProofGeneral Emacs mode
renders the specifications within Java code in mathematical notation. The
figures correspond to what the user sees on the screen in such mode. See
the screen shots at http://javaverification.org.
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class AssocList {
// : public specvar content :: ” (obj ∗ obj) set”
public Object put(Object k0, Object v0)
/∗ : requires ”k0 6= null ∧ v0 6= null”

modifies content
ensures
” ( result = null → content = old content ∪ {(k0, v0)}) ∧
( result 6= null→
content = old content − {(k0, result )} ∪ {(k0, v0)})” ∗/

{...}
}

Figure 1. Association List put method

public /∗ : claimedby AssocList ∗/ class Node {
public Object key; public Object value; public Node next;
// : public ghost specvar cnt :: ”(obj ∗ obj) set” = ”{}”

}
Figure 2. Node Definition

that it is the client’s responsibility to ensure that neither k0
nor v0 is null. The modifies clause indicates that the method
observably changes nothing except the abstract state con-
tent of the association list. The ensures clause states that
the abstract state content after the method executes is the
abstract state old content from before the method executed
augmented with the new association (k0,v0). Any previous
association (k0,result) is removed from the association list,
with result returned as the result of the put method. It re-
turns null if no such previous association exists.

Figure 2 presents the definition of the Node class, which
contains the key, value, and next fields that implement the
linked list of key, value pairs in the association list. The
assertion claimedby AssocList specifies that only the meth-
ods in the AssocList class can access these fields. Jahob
enforces this visibility condition by a syntactic check.

Each Node object has a specification variable cnt. This
variable holds a set of pairs representing all of the associa-
tions in the part of the association list starting at the given
Node object. It is initialized to the empty set, is explicitly
updated as the implementation manipulates the list of nodes,
and is conceptually part of the state of the corresponding
Node object. It is used only during the verification of the
association list and does not exist when the program runs.
The purpose of the cnt variable in the specification is to de-
fine the abstract state content of the association list.

Figure 3 presents the invariants that characterize the cnt
specification variable and the corresponding abstract state
content of the association list. The variable first holds a ref-
erence to the first Node in the linked list that implements
the association list; the abstract state content is the value of
the cnt specification variable of the first node in the list. The
CntDef invariant recursively defines cnt for non-null nodes
as the key, value pair in the node union the value of cnt for
the next node in the list. The CntNull invariant defines cnt
as empty for the null object.

The syntax of these invariants reflects the underlying se-

vardefs ”content == first .. cnt” ;
invariant CntDef:

”∀ x. x ∈ Node ∧ x ∈ alloc ∧ x 6= null→
x .. cnt = {(x .. key, x .. value)} ∪ x..next..cnt ∧
(∀ v. (x .. key, v) /∈ x..next..cnt) ” ;

invariant CntNull:
”∀ x. x ∈ Node ∧ x ∈ alloc ∧ x = null→ x..cnt = {}”;

private static specvar edge :: ”obj ⇒ obj⇒ bool”;
vardefs ”edge == (λ x y. (x ∈ Node ∧ y = x..next) ∨

(x ∈ AssocList ∧ y = x..first)) ” ;
invariant InjInv:

”∀ x1 x2 y. y 6= null ∧ edge x1 y ∧ edge x2 y→ x1=x2”;

Figure 3. Abstraction Function and Selected
Invariants

mantic domain in which the verification takes place. The
domain is an infinite set of objects. Classes correspond to
sets of objects within this domain. Fields correspond to to-
tal functions from objects to values— each object has all of
the fields from all of the classes. If the object is not a mem-
ber of a given class, the values of all of the fields from that
class are simply null. For example, x ∈ Node states that ob-
ject x has class Node. The expression x..next is a shorthand
for the application of function next to object x, with the next
function modeling the Java field next.

public Object get(Object k0)
/∗ : requires ”k0 6= null”

ensures ”(result 6= null→ (k0, result) ∈ content) ∧
( result = null → ¬(∃ v. (k0, v) ∈ content))” ∗/

{
Node current = first ;
while /∗ : inv ”∀ v. ((k0, v) ∈ content) =

((k0, v) ∈ current..cnt)” ∗/
(current != null ) {
if (current .key == k0) { return current.value; }
current = current .next;
}
return null ;
}

Figure 4. Implementation of the get method

Figure 4 presents the implementation of the get(k0)
method. This method searches the list to find the Node con-
taining the key k0, then returns the corresponding value v
(or null if no such value exists). The loop invariant states
that the pair (k0, value) is in the association list if and only
if it is in the part of the list remaining to be searched—in
effect, that the the search does not skip the Node with key
k0. Given the specification and the invariants, Jahob is ca-
pable of verifying that this method 1) correctly implements
its specification, and 2) correctly preserves the invariants.

In addition to this method, the association list contains
other methods that check membership of keys in the asso-
ciation list, add associations to the list, and remove associa-
tions from the list. For each of these methods, Jahob is able
to statically verify full functional specifications.
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Figure 5. High-level structure of Jahob

3 System Overview

Figure 5 summarizes key aspects of the Jahob architec-
ture, illustrating the provers that Jahob uses to establish
data structure correctness. Jahob is a command-line tool,
with command-line options that support verification at the
granularity of methods or even individual assertions. Such
modular verification enables interactive use that focuses on
one part of the verification problem at a time. Developers
specify Jahob programs using specification variable decla-
rations, method contracts, class invariants, and annotations
within method bodies. Many of these specification con-
structs contain formulas; the syntax and semantics of Jahob
formulas follow Isabelle/HOL[16].

Jahob produces verification conditions by simplifying
Java code and transforming it into extended guarded com-
mands, desugaring extended guarded commands into sim-
ple guarded commands, and finally generating verification
conditions from simple guarded commands in a standard
way. For each method, Jahob produces a verification condi-
tion expressed in the Isabelle/HOL notation. Jahob exploits
the property that each verification condition can typically
be split into a conjunction of a large number of conjuncts.
A typical data structure operation generates a verification
condition that splitting separates into a few hundred impli-
cations, each of which is a candidate for any of the provers
in Figure 5. Each implication must be valid for the data
structure operation to be correct, and each proof can be per-
formed entirely independently, opening up opportunities for
parallelization.

A Jahob user specifies, for each verification task, a se-
quence of provers and their parameters on the command
line. Jahob tries the provers in sequence, so the user lists
the provers starting from the ones that are most likely to
succeed or, if possible, fail quickly when they do not suc-
ceed. Often different provers are appropriate for different
proof obligations in the same method. For such cases Jahob

provides a facility to spawn provers in parallel and succeed
as soon as at least one of them succeeds. This is useful even
on a single-core machine because it gives the appropriate
prover the chance to quickly prove the fact instead of wait-
ing for any inappropriate provers to finish.

Each Jahob prover typically accepts formulas in a proper
subset of HOL. In practice, efficient provers are often spe-
cialized for a particular class of formulas. One of the dis-
tinguishing characteristics of Jahob is its ability to integrate
such specialized provers into a system that uses an expres-
sive HOL fragment. This integration is based on the concept
of formula approximation, which maps an arbitrary HOL
formula into semantically stronger formulas in a subset of
HOL[10]. The fact that the formulas are stronger ensures
that the approach is sound. For atomic formulas known
to the target logic subset, the approximation produces the
appropriate translation; for logical operations it proceeds
recursively; and for unknown atomic formulas it produces
true or false depending on the polarity of the formula. To
improve the precision of this recursive approximation step,
Jahob first applies rewrite rules that substitute definitions of
values, perform beta reduction, and flatten expressions.

Jahob deploys the following provers: 1) an internal syn-
tactic prover, which first tests whether the formula is triv-
ially valid by checking for the presence of propositional
constants and whether its conclusion appears in its assump-
tion (modulo simple syntactic transformations that preserve
validity); 2) first-order provers E[19] and SPASS[20]; 3)
SMT provers CVC3[8] and Z3[7], based on Nelson-Oppen
combination of decision procedures enhanced with quanti-
fier instantiation[14]; 4) MONA, a decision procedure for
monadic second-order logic over strings and trees[9] which
Jahob uses for shape analysis; and 5) interactive theorem
provers Isabelle[16]2, and Coq[5].

4 Verified Data Structures

We have specified and verified the following data structures:

• Association List: The association list data structure
discussed in Section 2.

• Space Subdivision Tree: A three-dimensional space
subdivision tree. Each internal node in the tree stores
the pointers to its subtrees in an eight-element array.

• Spanning Tree: A spanning tree for a graph. Verified
properties include that the produced data structure is,
in fact, a tree and that the spanning tree includes all
nodes reachable from the root of the graph.

• Hash Table: A separately-chained hash table imple-
menting a map from objects to objects.

2Jahob can also invoke Isabelle automatically on a given proof obliga-
tion using the general-purpose theorem proving tactic in Isabelle.
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Syntactic Isabelle Interactive Total
Data Structure Prover MONA Z3 SPASS E CVC3 Script Proof Time
Association List 227 120 (8.9s) 11.97s
Space Subdivision Tree 392 269 (46.9s) 9 (2.5s) 1 70.91s
Spanning Tree 368 80 (142.6s) 22 (2.0s) 172.17s
Hash Table 570 222 (58.3) 1(0.5) 6 73.65s
Binary Search Tree 469 665 (6232.1s) 170 (7.5s) 10 (0.5s) 6265s
Priority Queue 311 179 ( 4.9) 4 12.86s
Array List 400 306 (60.8s) 16 (66.7s) 2 (9.9s) 161.10s
Circular List 26 100 (183.6s) 184.37s
Singly-Linked List 74 94 (5.9s) 6.94s
Cursor List 193 218 (27.6s) 17 (2.3s) 41.24s

Figure 6. Number of Proved Sequents and Verification Times for Verified Data Structures

• Binary Search Tree: A binary search tree (with veri-
fied ordering and membership changes).

• Priority Queue: A priority queue stored as a com-
plete binary tree in a dense array. One verified prop-
erty, among others, is that the findMax method does, in
fact, return the largest element in the queue.

• Array List: A list stored in an array implementing
a map from integers to objects, optimized for storing
maps from a dense subset of the integers starting at
0. Method contracts in the list describe operations us-
ing an abstract relation {(0, v0), (1, v1), . . . , (k, vk)}
where k + 1 is the number of stored elements.

• Circular List: A circular doubly-linked list imple-
menting a set interface.

• Singly-Linked List: A null-terminated singly-linked
list implementing a set interface.

• Cursor List: A list with a cursor that can be used to
iterate over the elements in the list and, optionally, re-
move elements during the iteration. Method contracts
indicate changes to list content and to the position of
the iterator.

Together, these data structures comprise a significant subset
of the data structures found in a typical Java program.

4.1 Verification Statistics

Figure 6 contains, for each verified data structure, a line
summarizing the verification process for that data structure.
Each line contains a breakdown of the number of sequents
proved by each theorem prover or decision procedure when
verifying the corresponding data structure. The theorem
provers or decision procedures are applied in the order in
which they appear in the table. A blank table entry in-
dicates that the corresponding theorem prover or decision
procedure was not used during the verification. Figure 6

also presents, for each theorem prover or decision proce-
dure, the time it took to prove its sequents. Consider, for
example, the SPASS entry for the Association List. This
entry is 120 (8.9s), indicating that, for the Association List
data structure, the SPASS theorem prover took 8.9 seconds
to prove the 120 sequents that it successfully proved. The
final column presents the total verification time for the data
structure. In addition to the time spent in successful sequent
proof attempts, these times include the time spent in theo-
rem provers or decision procedures that did not manage to
prove the sequent before they timed out. Most of the data
structures verify within several minutes; the outlier is the
binary search tree with a total verification time of an hour
and forty-five minutes.

4.2 Discussion

Figure 6 illustrates how Jahob effectively combines the
capabilities of multiple theorem provers and decision proce-
dures to verify sophisticated data structure correctness prop-
erties. It also illustrates how the different capabilities of
these theorem provers and/or decision procedures are neces-
sary to obtain the full functional correctness proofs. For ex-
ample, although the vast majority of the sequents are proved
by fully automated means, the occasional use of interactive
proofs is critical for enabling the verification of our set of
data structures.

In our experience, specifying and verifying a new data
structure requires insight into why the data structure imple-
mentation is correct combined with familiarity with the ver-
ification system. At this point we are able to implement,
specify, and fully verify a new, relatively simple data struc-
ture (such as a list implementation of a set) in several hours.
More complicated data structures (such as a space subdivi-
sion tree) can take days or even, in extreme cases, a week
or more. The result is a reusable data structure that is guar-
anteed to correctly implement its specification.
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5 Related Work

We review related work in program verification systems,
shape analysis, and interactive theorem provers.

Software verification tools. Software verification tools
based on theorem proving include Spec#[3], ESC/Java2[6],
Krakatoa[12], KIV[2], and KeY[1]. We are not aware of
any effort to use these systems to verify that a significant
collection of data structure implementations conforms to
their specifications, nor of any other system that integrates
the diversity of theorem provers and decision procedures
that Jahob does.

Shape analysis. Many approaches in shape analysis fo-
cus on increasing automation by loop invariant inference,
but verify only shape properties and not full functional cor-
rectness properties such as the change of data structure
content[18] and certain correctness properties[11]. TVLA
generally accepts the supplied predicate update formulas
without verifying them and applies them automatically. Ja-
hob, in contrast, requires manual updates of ghost variables,
but verifies that these updates do not violate soundness. Ap-
proaches to automating separation logic have similarly fo-
cused primarily on shape properties as opposed to full cor-
rectness properties[4, 15]. Most approaches based on type
systems[21] have so far also been applied only to partial
correctness properties.

Interactive theorem proving systems. The notation for
formulas in Jahob is based on Isabelle/HOL[16]. We use
Isabelle for our interactive proofs, but other interactive
provers could also be used for this purpose[5]. Integration
of interactive proof with decision procedures is also used
in PVS[17]. Ongoing efforts integrate Isabelle with first-
order provers[13]. We believe that the Jahob approach is
useful for proof obligations arising in data structure ver-
ification, whether these proof obligations arise within the
context of a program verification system or an interactive
theorem prover.

6 Conclusion

Full functional verification has long been viewed as an
impractical or even unrealizable goal. The results in this
paper demonstrate that this goal is within practical reach
for linked data structures. Using the Jahob system, we have
verified many of the data structures that programmers use
in practice. Our results are especially compelling given the
widespread reuse of data structure libraries and the central
role that linked data structures play in computer science.
In the near future it is not unreasonable to expect to see
core data structure libraries shipped only after full func-
tional specification and verification.
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